41 research outputs found

    Stem Borers of Cereal Crops in Africa and Their Management

    Get PDF
    The economic importance of the stem borer in Africa results in their severe damage that affect directly cereal yield factors such as the density of fertile tillers and the number of effective panicles. The objective of this paper is to describe and discuss the management options of the main prevalent stem borer of cereal crops in Africa. Host plant resistance, cultural practices, biological control and reasoning chemical control are among the most encouraging options. Integrated pest management combining several compatible methods was highlighted as the most sustainable control option. This paper will served as support for the current research on cereal crops but also as relevant prospect document for entomologists and breeders from across the world

    Growth and yield responses of cowpea genotypes to soluble and rock P fertilizers on acid, highly weathered soil from humid tropical West Africa

    Get PDF
    Soils in tropical regions have inadequate levels of phosphorus and this apparently leads to reduced cowpea yield in Africa. Identifying phosphorus-efficient cultivars have the potential to reduce the demand for phosphorus fertilizer and increase the productivity of cowpea. This study was conducted to identify cowpea genotypes that maintain high yields under low soil phosphorus condition. A green-house experiment was conducted at the International Institute of Tropical Agriculture, Ibadan, Nigeria. Fifteen cowpea genotypes were used with two sources of phosphorus fertilisers: rock phosphate (60, 90 and 120 mg P kg−1 soil) and mono potassium phosphate (30, 60 and 90 mg P kg−1 soil) and compared to the control. The experiment was laid out in a strip plot arrangement with three replications. The findings suggested that large geneticvariability exist among the tested cowpea genotypes. IT90K-59 was identified as best phosphorus responder genotype for biomass production and IT90K-76 for grain yield at a rate of 60 mg P kg−1 soil as mono potassium phosphate. Danila and IT89KD-288 were identified as promising genotypes under no or minimal external P application. Five genotypes were identified as good responders to rock phosphate based on their grain yield production. The differential response of the genotypes to low soil phosphorus implies that these traits warrant effective selection for further improvement. Thus, identifying genotypes that can grow well in low phosphorus condition has the potential to reduce the quantity of mineral fertilizersand cost of production.© 2016 International Formulae Group. All rights reserved.Keywords: Rock phosphate, mono potassium phosphate, Alfisol soi

    Recent advances in cowpea IPM in West Africa

    Get PDF
    Cowpea is an important and climate-resilient grain legume for human and livestock nutrition worldwide. Its grains represent a valuable source of protein for rural families in Sub-Saharan Africa while its haulms offer nutritious fodder for livestock, especially, in the Sahel regions. Cowpea production, unfortunately, faces substantial challenges of field and storage insect pests which can cause up to 100% losses. The use of synthetic pesticides, although providing farmers with a good level of pest control, has underscored the critical need for the development of integrated pest management (IPM) alternatives, due to their detrimental effects on humans, animals and the environment. This review examines recent advances in West Africa in cowpea IPM approaches, highlighting research on host plant resistance, biological control, biopesticides, good cultural practices, and on-farm participatory research and training undertaken to support sustainable cowpea production. Numerous IPM options have been developed, tested and validated for combating cowpea insect problems in West Africa by research institutions and disseminated through farmer field schools (FFS), field demonstrations, training sessions, and community-based education. Reviewing these environmentally safer and scalable IPM innovations will provide cowpea stakeholders with insights into workable, sustainable solutions for minimizing crop pest problems, reducing reliance on harmful pesticides and ultimately ensuring the long-term viability of cowpea production and its contribution to food security

    Genome Resources for Climate‐Resilient Cowpea, an Essential Crop for Food Security

    Get PDF
    Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought‐prone climates, and a primary source of protein in sub‐Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K‐499‐35 include a whole‐genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi‐parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited‐input small‐holder farming and climate stress

    From bits to bites: Advancement of the Germinate platform to support prebreeding informatics for crop wild relatives

    Get PDF
    Management and distribution of experimental data from prebreeding projects is important to ensure uptake of germplasm into breeding and research programs. Being able to access and share this data in standard formats is essential. The adoption of a common informatics platform for crops that may have limited resources brings economies of scale, allowing common informatics components to be used across multiple species. The close integration of such a platform with commonly used breeding software, visualization, and analysis tools reduces the barrier for entry to researchers and provides a common framework to facilitate collaborations and data sharing. This work presents significant updates to the Germinate platform and highlights its value in distributing prebreeding data for 14 crops as part of the project ‘Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives’ (hereafter Crop Trust Crop Wild Relatives project) led by the Crop Trust (https://www.cwrdiversity.org). The addition of data on these species compliments data already publicly available in Germinate. We present a suite of updated Germinate features using examples from these crop species and their wild relatives. The use of Germinate within the Crop TrustCropWildRelatives project demonstrates the usefulness of the system and the benefits a shared informatics platform provides. These data resources provide a foundation on which breeding and research communities can develop additional online resources for their crops, harness new data as it becomes available, and benefit collectively from future developments of the Germinate platform

    Redesigning crop varieties to win the race between climate change and food security

    Get PDF
    Climate change poses daunting challenges to agricultural production and food security. Rising temperatures, shifting weather patterns, and more frequent extreme events have already demonstrated their effects on local, regional, and global agricultural systems. Crop varieties that withstand climate-related stresses and are suitable for cultivation in innovative cropping systems will be crucial to maximize risk avoidance, productivity, and profitability under climate-changed environments. We surveyed 588 expert stakeholders to predict current and novel traits that may be essential for future pearl millet, sorghum, maize, groundnut, cowpea, and common bean varieties, particularly in sub-Saharan Africa. We then review the current progress and prospects for breeding three prioritized future-essential traits for each of these crops. Experts predict that most current breeding priorities will remain important, but that rates of genetic gain must increase to keep pace with climate challenges and consumer demands. Importantly, the predicted future-essential traits include innovative breeding targets that must also be prioritized; for example, (1) optimized rhizosphere microbiome, with benefits for P, N, and water use efficiency, (2) optimized performance across or in specific cropping systems, (3) lower nighttime respiration, (4) improved stover quality, and (5) increased early vigor. We further discuss cutting-edge tools and approaches to discover, validate, and incorporate novel genetic diversity from exotic germplasm into breeding populations with unprecedented precision, accuracy, and speed. We conclude that the greatest challenge to developing crop varieties to win the race between climate change and food security might be our innovativeness in defining and boldness to breed for the traits of tomorrow
    corecore